YEDİTEPE UNIVERSITY

COURSE INFORMATON					
Course Code		Course Title			
Semester	Credits	ECTS	C + P + L Hour	Prerequisites	
6	3	6	2 + 0 + 2	ISE 102	

Language of Instruction		Course Level	Course Type
English		Undergraduate	Core
Course Coordinator			
Instructors	Assist. Prof.	. Eylül Damla Gönül Sezer	
Assistants	Alper YILDI	Z	
Goals	The aim of this course is to understand the basic definitions and descriptions of systems modeling, and to be able to conduct system requirement analysis. At the end of this course students will be able to develop model based system design.		
Content	This course introduces the system design. This course introduces the systems engineering design and integration process, including the development of functional, physical, and operational architectures. The emphasis of this course is on requirements engineering, functional modeling for design, formulation and analysis of physical design alternatives, verification and validation. The course is designed to provide students with experience using mathematical and graphical tools for systems analysis and control, testing and evaluation. Methods and software tools for systems engineering are introduced.		
Contribution of the Course to the Professional Education	Course ena design met	bles students to understand nodology.	and apply model-based system

Course Learning Outcomes	Detailed Program Outcomes	Teaching Methods	Assessment Methods	
1) Adequate knowledge in functional system modelling	1a,1b,3a,3b,6a, 6b	1,2,3	A,F,G,H	
2) Ability to use graphical tools for modelling.	1a,1b,4a,4b	1,2,4	A,F,G,H	

YEDİTEPE UNIVERSITY FACULTY OF ENGINEERING

COURSE DESCRIPTION FORM 2019/2020-1

3) Adequate knowledge in developing operational architecture.		1b,6a,6b	1,2,3,4	A,F,G,H
Teaching Methods:	1: Lecture by instructor, 2: Lecture by instructor with class discussion, 3: Problem solving by instructor, 4: Use of simulations, 5: Problem solving assignment, 6: Reading assignment, 7: Laboratory work, 8: Term research, 9: Presentation by guest speaker, 10: Sample project review, 11: Interdiciplinary group working			
Assessment Methods:	A: Written exam, B: Multiple-choice report, E: Homework, F: Project, G: student.	exam, C: Take-h Report by stude	10me quiz, [nt, H: Prese): Experiment ntation by

COURSE CONTENT				
Week	Topics	Study Materials		
1	Introduction to Systems Engineeringa) Systems Terminologyb) Overview of the system engineering design process	Text Books and Lecture Notes		
2	Requirements Analysis	Text Books and		
3	Requirements Analysis	Text Books and		
4	System Concept and Design Process	Text Books and		
5	Functions of Design Process	Text Books and Lecture Notes		
6	Midterm	Text Books and Lecture Notes		
7	Functions of Design Process	Text Books and Lecture Notes		
8	Integration and Evaluation	Text Books and		
9	Graphical Modeling Techniques	Text Books and Lecture Notes		
10	Graphical Modeling Techniques	Text Books and Lecture Notes		
11	Decision Support Systems	Text Books and Lecture Notes		
12	Verification and Validation	Text Books and Lecture Notes		

YEDİTEPE UNIVERSITY FACULTY OF ENGINEERING

13	Project Presentations	Text Books and
15		Lecture Notes
14	Project Presentations	Text Books and Lecture Notes

RECOMMENDED SOURCES			
Textbook	Course Notes per e-mail		
Additional Resources	Engineering Design of Systems – Dennis Buede Wiley, 2000		

MATERIAL SHARING			
Documents	Powerpoint slides		
Assignments	System Design Project		
Exams	Midterms, Final		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	55		
Term Project	1	45		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		35		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		65		
Total		100		

COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES					
No	Program Learning Outcomes	check √			
1a	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline,	\checkmark			

YEDİTEPE UNIVERSITY

COURSE DESCRIPTION FORM 2019/2020-1

Ability to use theoretical and applied knowledge in these areas in complex $\sqrt{}$ 1b engineering problems. Ability to identify, formulate, and solve complex engineering problems, 2a Ability to select and apply proper analysis and modeling methods for this 2b purpose. Ability to design a complex system, process, device or product under realistic $\sqrt{}$ 3a constraints and conditions, in such a way as to meet the desired result, Ability to apply modern design methods for this purpose. 3b $\sqrt{}$ Ability to devise, select and use modern techniques and tools needed for $\sqrt{}$ 4a analyzing and solving complex problems encountered in engineering practice. Ability to employ information technologies effectively. 4b Ability to design experiments for investigating complex engineering problems 5a or discipline specific research questions, Ability to conduct experiments, gather data, analyze and interpret results for 5b investigating complex engineering problems or discipline specific research questions. Ability to work efficiently in intra-disciplinary teams, $\sqrt{}$ 6a Ability to work efficiently in multi-disciplinary teams, $\sqrt{}$ 6b Ability to work individually. 6c Ability to communicate effectively in Turkish, both orally and in writing, 7a Knowledge of a minimum of one foreign language, 7b Ability to write effective reports and comprehend written reports, 7c prepare design and production reports, Ability to make effective presentations, 7d Ability to give and receive clear and intelligible instructions. 7e Recognition of the need for lifelong learning, ability to access information, ability 8a to follow developments in science and technology, Ability to continue to educate him/herself. 8b 9a Consciousness to behave according to ethical principles and professional and ethical responsibility. 9b Knowledge on standards used in engineering practice. Knowledge about business life practices such as project management, risk 10a management, change management. 10b Awareness in entrepreneurship and innovation. Knowledge about sustainable development. **10c** Knowledge about the global and social effects of engineering practices on 11a health, environment, and safety,

11b	Knowledge about contemporary issues of the century reflected into the field of engineering.	
11c	Awareness of the legal consequences of engineering solutions.	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	4	48	
Hours for off-the-classroom study (Pre-study, practice)	14	4	56	
Midterm examination	1	2	2	
Project	1	35	35	
Final examination	1	3	3	
Total Work Load			144	
Total Work Load / 25 (h)			5,7	
ECTS Credit of the Course			6	

Prepared by: Dr. Eylül Damla Gönül Sezer	Preparation date: 20.10.2019
--	------------------------------